Aufgaben Hypothesentests

1. Produktion von Stofftaschentüchern

In einer Firma werden Stofftaschentücher produziert und in wiederverschließbare Plastikhüllen verpackt. Bei stündlichen Prüfungen von jeweils 120 Päckchen stellt fest, dass höchsten 10% der Päckchen falsch verpackt wurden.

Wie viele falsch verpackte Päckchen dürfen bei einer Prüfung höchstens gefunden werden, damit man bei einer Irrtumswahrscheinlichkeit von 5% davon ausgehen kann, dass die Ausschussrate sich nicht verschlechtert hat?

Lösung:

Nullhypothese H_0 : p=0.1; Stichprobenumfang n=120; Irrtumsws. $\alpha=5\%$

Testtyp: Rechtsseitig, denn wenn wir mehr falsch verpackte Päckchen in der Stichprobe vorfinden als bisher, dann muss H_0 abgelehnt werden.

Ablehnungsbereich: [k; 120]

Gesucht k und darauf basierend eine Entscheidungsregel.

$$P(X \ge k) = 1 - P(X \le k - 1) \le 5\%$$
 $P(X \ge k) = 1 - binomcdf(120,0.1, X - 1) => Y-Editor, dann 2ND TABLE.$

X	[Υ1	
14 15 16 17 18 19	.31266 .21816 .14397 .08987 .05309 .02971 .01577	
X=20		

Für k = 19 liegt man erstmals unter der Irrtumswahrscheinlichkeit, siehe Abbildung.

Entscheidungsregel:

Wenn 19 oder mehr Päckchen bei der Prüfung als falsch verpackt eingestuft werden, dann muss $H_{\rm 0}$ abgelehnt werden, da sich dann die Ausschussrate bei einer Irrtumswahrscheinlichkeit von höchstens 5% verschlechtert hat.

2. Ausbreitung eines Schädlings

In einem Wald hat sich ein Schädling ausgebreitet und man nimmt an, dass momentan höchstens 2% aller Bäume davon betroffen sind. Um dies zu überprüfen untersucht man 150 Bäume und findet darunter 5 Bäume, die von dem Schädling befallen sind.

Können wir nun bei einer Irrtumswahrscheinlichkeit von 3% davon ausgehen, dass die unsere Annahme korrekt ist?

Wie viele Bäume müssten von dem Schädling befallen sein, damit die obige Annahme verworfen werden sollte?

Lösung:

Nullhypothese H_0 : p=0.02; Stichprobenumfang n=150; Irrtumsws. $\alpha=3\%$

Testtyp: Rechtsseitig, denn wenn wir "zu viele" (also mehr als eine gewisse Anzahl k) an befallenen Bäumen zählen, dann würde dies auf eine höhere Befallsrate hindeuten und H_0 müsste abgelehnt werden.

Ablehnungsbereich: [k; 150]

Gesucht *k* und darauf basierend eine Entscheidungsregel.

$$P(X \ge k) = 1 - P(X \le k - 1) \le 3\%$$

 $P(X \ge k) = 1 - binomcdf(150,0.02, X - 1) => Y-Editor, dann 2ND TABLE.$

X	[Yt	
5 6 7 9 10	.35276 .18303 .08188 .03199 .01105 .00341 9.56-4	
X=8		

Für k = 8 liegt man erstmals unter der Irrtumswahrscheinlichkeit von 3%, siehe Abbildung.

Entscheidungsregel:

Wenn 8 oder mehr befallene Bäume gezählt werden, dann muss H_0 abgelehnt werden.

Entscheidung:

Da aber nur 5 befallene Bäume festgestellt wurden, kann die Annahme bei einer Irrtumswahrscheinlichkeit von höchstens 3% als korrekt angesehen werden.

3. Beliebtheit einer Schokoladensorte

Nach einer Werbekampagne wird davon ausgegangen, dass die Verkaufsrate der Schokoladensorte Schokotraum im Supermarkt Günstigkauf bei mindestens 4% liegt. Bei einer Umfrage unter 200 Kunden des Supermarkts stellt sich heraus, dass 8 Kunden die Schokolade gekauft haben. Können wir nun bei einem Signifikanzniveau von 5% davon ausgehen, dass diese Annahme korrekt ist?

Wie hoch dürfte die Anzahl der Kunden, die die Schokolade gekauft haben, höchstens sein, damit die obige Annahme verworfen werden müsste?

Lösung:

Nullhypothese H_0 : p=0.04; Stichprobenumfang n=200; Irrtumsws. $\alpha=5\%$

Testtyp: Linksseitig, denn wenn wir "zu wenige" (also weniger als eine gewisse Anzahl k) an Kunden zählen, dann würde dies auf eine niedrigere Verkaufsrate hindeuten und H_0 müsste abgelehnt werden.

Ablehnungsbereich: [0; k]

Gesucht k und darauf basierend eine Entscheidungsregel.

$$P(X \le k) \le 5\%$$

 $P(X \le k) = binomcdf(200,0.04,X) \Rightarrow Y-Editor, dann 2ND TABLE.$

X	Y1	
0428456	2.8E-4 .00249 .01249 .039505 .09565 .18565 .3083	
X=3		

Für k = 3 liegt man erstmals unter der Irrtumswahrscheinlichkeit von 3%, siehe Abbildung.

Entscheidungsregel:

Wenn 3 oder weniger Kunden die Schokolade gekauft haben, dann muss H_0 abgelehnt werden.

Entscheidung:

Da aber 8 Kunden gezählt wurden, kann der Annahme, dass die Verkaufsrate von "Schokotraum" über 4% liegt bei einer Irrtumswahrscheinlichkeit von höchstens 5% zugestimmt werden.